Creating high-performance generalizable deep neural networks for phytoplankton monitoring requires utilizing large-scale data coming from diverse global water sources. A major challenge to training such networks lies in data privacy, where data collected at different facilities are often restricted from being transferred to a centralized location. A promising approach to overcome this challenge is federated learning, where training is done at site level on local data, and only the model parameters are exchanged over the network to generate a global model. In this study, we explore the feasibility of leveraging federated learning for privacy-preserving training of deep neural networks for phytoplankton classification. More specifically, we simulate two different federated learning frameworks, federated learning (FL) and mutually exclusive FL (ME-FL), and compare their performance to a traditional centralized learning (CL) framework. Experimental results from this study demonstrate the feasibility and potential of federated learning for phytoplankton monitoring.
translated by 谷歌翻译
气候变化正在增加有害藻华(HAB)的频率和严重程度,这些藻类在水产养殖场中造成大量鱼类死亡。这有助于海洋污染和温室气体(GHG)的排放,因为死鱼要么被倾倒到海洋中,要么被带到垃圾填埋场,进而对气候产生负面影响。当前,列举有害藻类和其他浮游植物的标准方法是在显微镜下手动观察并对其进行计数。这是一个耗时,乏味且容易出错的过程,导致农民的管理决定妥协。因此,自动化此过程以进行快速准确的HAB监控非常有帮助。但是,这需要大量且多样化的浮游植物图像数据集,并且这些数据集很难快速生产。在这项工作中,我们探讨了产生新型高分辨率的光真逼真的合成浮游植物图像的可行性,这些图像包含相同图像中的多个物种,并且给定了一小部分真实图像。为此,我们采用生成的对抗网络(GAN)来生成合成图像。我们使用标准图像质量指标评估了三种不同的GAN架构:ProjectedGan,Fastgan和styleganv2。我们从经验上显示了仅使用961个真实图像的训练数据集的高保真合成浮游植物图像的产生。因此,这项工作证明了甘斯从小型培训数据集中创建大型浮游植物的大型合成数据集的能力,从而朝着可持续的系统监测有害藻类绽放迈出了关键的一步。
translated by 谷歌翻译
While inferring common actor states (such as position or velocity) is an important and well-explored task of the perception system aboard a self-driving vehicle (SDV), it may not always provide sufficient information to the SDV. This is especially true in the case of active emergency vehicles (EVs), where light-based signals also need to be captured to provide a full context. We consider this problem and propose a sequential methodology for the detection of active EVs, using an off-the-shelf CNN model operating at a frame level and a downstream smoother that accounts for the temporal aspect of flashing EV lights. We also explore model improvements through data augmentation and training with additional hard samples.
translated by 谷歌翻译
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but the quality bar for medical and clinical applications is high. Today, attempts to assess models' clinical knowledge typically rely on automated evaluations on limited benchmarks. There is no standard to evaluate model predictions and reasoning across a breadth of tasks. To address this, we present MultiMedQA, a benchmark combining six existing open question answering datasets spanning professional medical exams, research, and consumer queries; and HealthSearchQA, a new free-response dataset of medical questions searched online. We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias. In addition, we evaluate PaLM (a 540-billion parameter LLM) and its instruction-tuned variant, Flan-PaLM, on MultiMedQA. Using a combination of prompting strategies, Flan-PaLM achieves state-of-the-art accuracy on every MultiMedQA multiple-choice dataset (MedQA, MedMCQA, PubMedQA, MMLU clinical topics), including 67.6% accuracy on MedQA (US Medical License Exam questions), surpassing prior state-of-the-art by over 17%. However, human evaluation reveals key gaps in Flan-PaLM responses. To resolve this we introduce instruction prompt tuning, a parameter-efficient approach for aligning LLMs to new domains using a few exemplars. The resulting model, Med-PaLM, performs encouragingly, but remains inferior to clinicians. We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning, suggesting the potential utility of LLMs in medicine. Our human evaluations reveal important limitations of today's models, reinforcing the importance of both evaluation frameworks and method development in creating safe, helpful LLM models for clinical applications.
translated by 谷歌翻译
A canonical algorithm for log-concave sampling is the Langevin Algorithm, aka the Langevin Diffusion run with some discretization stepsize $\eta > 0$. This discretization leads the Langevin Algorithm to have a stationary distribution $\pi_{\eta}$ which differs from the stationary distribution $\pi$ of the Langevin Diffusion, and it is an important challenge to understand whether the well-known properties of $\pi$ extend to $\pi_{\eta}$. In particular, while concentration properties such as isoperimetry and rapidly decaying tails are classically known for $\pi$, the analogous properties for $\pi_{\eta}$ are open questions with direct algorithmic implications. This note provides a first step in this direction by establishing concentration results for $\pi_{\eta}$ that mirror classical results for $\pi$. Specifically, we show that for any nontrivial stepsize $\eta > 0$, $\pi_{\eta}$ is sub-exponential (respectively, sub-Gaussian) when the potential is convex (respectively, strongly convex). Moreover, the concentration bounds we show are essentially tight. Key to our analysis is the use of a rotation-invariant moment generating function (aka Bessel function) to study the stationary dynamics of the Langevin Algorithm. This technique may be of independent interest because it enables directly analyzing the discrete-time stationary distribution $\pi_{\eta}$ without going through the continuous-time stationary distribution $\pi$ as an intermediary.
translated by 谷歌翻译
We explore the use of large language models (LLMs) for zero-shot semantic parsing. Semantic parsing involves mapping natural language utterances to task-specific meaning representations. Language models are generally trained on the publicly available text and code and cannot be expected to directly generalize to domain-specific parsing tasks in a zero-shot setting. In this work, we propose ZEROTOP, a zero-shot task-oriented parsing method that decomposes a semantic parsing problem into a set of abstractive and extractive question-answering (QA) problems, enabling us to leverage the ability of LLMs to zero-shot answer reading comprehension questions. For each utterance, we prompt the LLM with questions corresponding to its top-level intent and a set of slots and use the LLM generations to construct the target meaning representation. We observe that current LLMs fail to detect unanswerable questions; and as a result, cannot handle questions corresponding to missing slots. To address this problem, we fine-tune a language model on public QA datasets using synthetic negative samples. Experimental results show that our QA-based decomposition paired with the fine-tuned LLM can correctly parse ~16% of utterances in the MTOP dataset without requiring any annotated data.
translated by 谷歌翻译
Task-oriented dialogue systems often assist users with personal or confidential matters. For this reason, the developers of such a system are generally prohibited from observing actual usage. So how can they know where the system is failing and needs more training data or new functionality? In this work, we study ways in which realistic user utterances can be generated synthetically, to help increase the linguistic and functional coverage of the system, without compromising the privacy of actual users. To this end, we propose a two-stage Differentially Private (DP) generation method which first generates latent semantic parses, and then generates utterances based on the parses. Our proposed approach improves MAUVE by 3.8$\times$ and parse tree node-type overlap by 1.4$\times$ relative to current approaches for private synthetic data generation, improving both on fluency and semantic coverage. We further validate our approach on a realistic domain adaptation task of adding new functionality from private user data to a semantic parser, and show gains of 1.3$\times$ on its accuracy with the new feature.
translated by 谷歌翻译
Language modeling, a central task in natural language processing, involves estimating a probability distribution over strings. In most cases, the estimated distribution sums to 1 over all finite strings. However, in some pathological cases, probability mass can ``leak'' onto the set of infinite sequences. In order to characterize the notion of leakage more precisely, this paper offers a measure-theoretic treatment of language modeling. We prove that many popular language model families are in fact tight, meaning that they will not leak in this sense. We also generalize characterizations of tightness proposed in previous works.
translated by 谷歌翻译
From smoothly pursuing moving objects to rapidly shifting gazes during visual search, humans employ a wide variety of eye movement strategies in different contexts. While eye movements provide a rich window into mental processes, building generative models of eye movements is notoriously difficult, and to date the computational objectives guiding eye movements remain largely a mystery. In this work, we tackled these problems in the context of a canonical spatial planning task, maze-solving. We collected eye movement data from human subjects and built deep generative models of eye movements using a novel differentiable architecture for gaze fixations and gaze shifts. We found that human eye movements are best predicted by a model that is optimized not to perform the task as efficiently as possible but instead to run an internal simulation of an object traversing the maze. This not only provides a generative model of eye movements in this task but also suggests a computational theory for how humans solve the task, namely that humans use mental simulation.
translated by 谷歌翻译
Topological data analysis (TDA) is an expanding field that leverages principles and tools from algebraic topology to quantify structural features of data sets or transform them into more manageable forms. As its theoretical foundations have been developed, TDA has shown promise in extracting useful information from high-dimensional, noisy, and complex data such as those used in biomedicine. To operate efficiently, these techniques may employ landmark samplers, either random or heuristic. The heuristic maxmin procedure obtains a roughly even distribution of sample points by implicitly constructing a cover comprising sets of uniform radius. However, issues arise with data that vary in density or include points with multiplicities, as are common in biomedicine. We propose an analogous procedure, "lastfirst" based on ranked distances, which implies a cover comprising sets of uniform cardinality. We first rigorously define the procedure and prove that it obtains landmarks with desired properties. We then perform benchmark tests and compare its performance to that of maxmin, on feature detection and class prediction tasks involving simulated and real-world biomedical data. Lastfirst is more general than maxmin in that it can be applied to any data on which arbitrary (and not necessarily symmetric) pairwise distances can be computed. Lastfirst is more computationally costly, but our implementation scales at the same rate as maxmin. We find that lastfirst achieves comparable performance on prediction tasks and outperforms maxmin on homology detection tasks. Where the numerical values of similarity measures are not meaningful, as in many biomedical contexts, lastfirst sampling may also improve interpretability.
translated by 谷歌翻译